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Abstract. The process of e+e− annihilation into a π+π− pair with radiation of a photon is considered. The
amplitude of the reaction e+e− → π+π−γ consists of the model independent initial-state radiation (ISR)
and model dependent final-state radiation (FSR). The general structure of the FSR tensor is constructed
from Lorentz covariance, gauge invariance and discrete symmetries in terms of the three invariant functions.
To calculate these functions we apply chiral perturbation theory (ChPT) with vector and axial-vector
mesons. The contribution of the e+e− → π+π−γ process to the muon anomalous magnetic moment
is evaluated, and results are compared with the dominant contribution in the framework of a hybrid
model, consisting of VMD and point-like scalar electrodynamics. The developed approach allows us also
to calculate the π+π− charge asymmetry.

PACS. 12.20.-m; 12.39.Fe; 13.40.-f; 13.66.Bc

1 Introduction

The cross section of electron–positron annihilation into
hadrons, e+e− → hadrons, is crucial for the evaluation
of the hadronic contribution to the anomalous magnetic
moment (AMM) of the muon ahad

µ and is at present one
of the main sources of theoretical uncertainty in the value
of AMM [1]. In order to resolve the existing deviation of
the experimental and standard model prediction values of
AMM, the corresponding hadronic contribution is needed
with very high accuracy, better than 1%. This is espe-
cially important in view of a new E969 experiment, which
is expected to measure AMM about three times more ac-
curately than now [2].

The hadronic contribution to AMM cannot be reli-
ably calculated in the framework of perturbative QCD,
because the low-energy region dominates, and one usu-
ally resorts to dispersion relations, where the experimen-
tal total cross section is the input. Experimentally, the
energy region from threshold to the collider beam energy
is explored at the Φ-factory DAΦNE (Frascati) [3] and B-
factories BaBar (SLAC) and Belle (KEK) [4,5] using the
method of radiative return [6–8]. In spite of the loss in the
luminosity, this method potentially may have advantages
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in systematics over the more traditional direct scanning
measurements performed at different CM energies, such
as experiments on VEPP-2M (Novosibirsk) [9] and BES
(Bejing) [10].

The radiative return method relies on a factorization
of the e+e− → hadrons + γ cross section in the product
of the hadronic cross section σ(e+e− → hadrons) taken at
a reduced CM energy and a model independent radiation
function known from quantum electrodynamics (QED) [8,
11,12]. This factorization is valid only for photon radia-
tion from the initial leptons (initial-state radiation (ISR)).
The additional contribution from photon radiation off the
final hadrons (final-state radiation (FSR)) is model depen-
dent and becomes a background in the radiative return
scanning measurements. That is why the problem of the
separation of ISR and FSR has become quite important.

Different methods have been suggested to separate ISR
and FSR contributions for the dominant hadronic channel
at low energies – mainly the pion pair production process

e−(p1) + e+(p2) → π+(p+) + π−(p−) + γ(k). (1)

One of them is to choose a kinematic set up where the pho-
ton is radiated along the momenta of the leptons (DAΦNE
setup, [3,8] and references therein). In these conditions the
FSR contribution is suppressed. If the FSR background
can be reliably calculated in some theoretical model, then
it can be subtracted from the experimental cross section of
the process (1) or incorporated in the Monte Carlo event
generator used in the analysis. Finally, the theoretical pre-
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dictions for FSR can be tested by studying the C-odd in-
terference of ISR and FSR [3,8].

Another and even more important reason why one
should know the FSR cross section is the fact that
the next-to-leading order hadronic contribution ahad,γ

µ to
AMM, where an additional photon is attached to hadrons,
is of the order of the present experimental accuracy.

The FSR cross section in the process (1) has been cal-
culated [11,13] in the framework of scalar QED (sQED),
in which the pions are treated as point-like particles, and
the resulting amplitude is multiplied by the pion electro-
magnetic form factor Fπ(s) evaluated in the vector meson
dominance (VMD) model (s is the invariant e+e− energy
squared) to account for the pion structure. In this model
the contribution of the channel π+π−γ to AMM is esti-
mated as ahad,γ

µ = 4.3 × 10−10 [13]. Although sQED in
some cases works well [3,13], it is clear that sQED is a
simplified model of a complicated process, which may in-
clude excitation of resonances, loop contributions, etc. In
view of the above mentioned requirements for the accu-
racy of theoretical predictions, further studies of the FSR
contribution are necessary.

In this paper we consider the e+e− → π+π−γ reaction
in detail, focusing on FSR. Firstly, we specify the model
independent structure of the FSR amplitude, based on
Lorentz covariance, gauge invariance and discrete symme-
tries. Taking this structure into account we rewrite the
FSR contribution, as well as the interference of ISR and
FSR, in terms of the three scalar functions fi depend-
ing on three kinematical invariants. Secondly, the model
dependent functions fi are obtained in the framework of
chiral perturbation theory (ChPT) with vector ρ(770) and
axial-vector a1(1260) mesons [14]. In this way fi are ex-
pressed through the several constants entering the ChPT
Lagrangian.

For experimental conditions, in which the cross section
integrated over the full phase space of the two pions is
required, this integration is carried out analytically. We
obtain a general result for the cross section dσ/dq2d cos θ
in terms of the two scalar functions h1,2(q2, s) (q2 is the
invariant mass of the π+π− pair, θ is the angle between
photon and electron momenta).

We further study the interference of ISR and FSR by
calculating the π+π− charge asymmetry. Finally, the con-
tribution for the π+π−γ channel to ahad,γ

µ is evaluated and
results are compared with sQED predictions.

This paper is organized as follows. In Sect. 2 the gen-
eral form of the amplitude is considered. The squared and
averaged amplitudes for ISR and FSR, as well as the inter-
ference part are analytically calculated and the structure
of the cross section dσ/dq2d cos θ is studied. The invari-
ant functions fi in the framework of ChPT are derived
in Sect. 3. Results of calculations and discussion are pre-
sented in Sect. 4. In Sect. 5 we draw conclusions. In Ap-
pendix A we discuss symmetries of the FSR tensor and
its model independent structure. Appendix B contains the
ChPT Lagrangian and an explicit expression for the FSR
tensor. In Appendix C the Feynman rules needed for eval-
uation of the γ∗ → γπ+π− amplitude are specified. Ap-
pendix D collects the expressions for the scalar functions
h1,2(q2, s) in ChPT. Some subtle aspects of the kinematics
at low values of q2 are presented in Appendix E. In Ap-
pendix F the contribution to the FSR tensor and charge
asymmetry from the “anomalous” ρ → πγ process is cal-
culated.

2 Formalism for e+e− → π+π−γ reaction

Reaction (1) is described by the diagrams depicted in
Fig. 1. To analyze it we introduce the 4-momenta Q =
p1 + p2, q = p+ + p− and l = p+ − p−. The amplitude of
the reaction depends on five independent Lorentz scalars,
which can be chosen as follows:

s ≡ Q2 = 2p1 · p2,

t1 ≡ (p1 − k)2 − m2
e = −2p1 · k,

t2 ≡ (p2 − k)2 − m2
e = −2p2 · k,

u1 ≡ l · p1, u2 ≡ l · p2, (2)

where we neglected the electron mass (me) in the expres-
sion for s. For further reference note that other invariants
are related to those in (2), for instance, q2 = s + t1 + t2,
l2 = 4m2

π −s− t1 − t2, q · l = 0, k ·Q = k ·q = − 1
2 (t1 + t2),

k · l = Q · l = u1 + u2.
The amplitude of process (1) is the sum M = MISR +

MFSR, where MISR (MFSR) describes the ISR (FSR) pro-
cess:

MISR = − e

q2 Lµνε∗
ν lµFπ(q2), MFSR =

e2

s
JµMµν

F ε∗
ν ,

(3)
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Fig. 1. Diagrams describing the e+e− → π+π−γ process
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where the lepton currents are given by

Lµν = e2ūs2(−p2)

×
[
γν (−p/2 + k/ + me)

t2
γµ + γµ (p/1 − k/ + me)

t1
γν

]
×us1(p1), (4)

Jµ = eūs2(−p2)γµus1(p1), (5)

Fπ(q2) is the pion electromagnetic (EM) form factor, ε∗
ν

is the photon polarization vector and the tensor Mµν
F de-

scribes the photon radiation from the final state. This ten-
sor is considered in detail in Sect. 3 and Appendices A and
B. In (4) and (5) us1(p1) and ūs2(−p2) are the electron
and positron spinors with normalization ūs′(p)us(p) =
−ūs′(−p)us(−p) = 2meδss′ .

The invariant amplitude squared, averaged over initial
lepton polarizations and summed over the photon polar-
izations1, can be written as

|M |2 = |MISR|2 + |MFSR|2 + 2Re(MISRM∗
FSR). (6)

The expressions for |MISR|2, |MFSR|2 and the interference
part Re(MISRM∗

FSR) are given in Sects. 2.1, 2.2 and 2.3.
The differential cross section for the process (1) is writ-

ten in the following form:

dσ =
1

2s(2π)5

∫
δ4(p1 + p2 − p− − p+ − k)

×d3p+

2E+

d3p−
2E−

d3k

2ω
|M |2, (7)

where p+ = (E+,p+), p− = (E−,p−) and k = (ω =
|k|,k).

2.1 Initial-state radiation

Let us consider first the ISR contribution shown in Fig. 1a.
The amplitude squared can be written as

|MISR|2 = −e6

q4 |Fπ(q2)|2L(γ)
µν lµlν , (8)

L(γ)
µν

=
[
(q2 − t1)2 + (q2 − t2)2

t1t2
− 2m2

eq
2

t21
− 2m2

eq
2

t22

]
g̃µν

+
(

4q2

t1t2
− 8m2

e

t21

)
p̃2µp̃2ν +

(
4q2

t1t2
− 8m2

e

t22

)
p̃1µp̃1ν ,

where p̃1µ = p1µ − qµ(p1 · q)/q2 and similarly for p̃2µ, and
g̃µν = gµν − qµqν/q2.

If one integrates over the full, unrestricted phase space
of the final pions, the hadronic tensor can be integrated
in the invariant form (see [11])

|Fπ(q2)|2
16π2

∫
δ4(p1 + p2 − p+ − p− − k) lµlν

1 We use
∑

polar. ε∗
ρεσ = −gρσ.

×d3p+d3p−
E+E−

=
q4

8π2α2 σ(q2)g̃µν , (9)

which leads to the following cross section (“F” stands for
“Full”):

dσ
(F)
ISR

dωdΩ
=

αω

2π2s
σ(q2) (10)

×
[
(q2 − t1)2 + (q2 − t2)2

t1t2
− 2q2m2

e

t21
− 2q2m2

e

t22

]
,

where

σ(q2) =
πζα2

3q2 |Fπ(q2)|2

is the total cross section for e+e− → π+π−, ζ = (1 −
4m2

π/q2)3/2 and α = e2/4π ≈ 1/137 is the fine-structure
constant, dΩ = d cos θdφ and θ (φ) is the polar (az-
imuthal) angle for the emitted photon. Note that the cross
section does not depend on the azimuthal angle φ.

Integration over the photon angles leads to the result

dσ
(F)
ISR

dq2 = σ(q2)
2α(s2 + q4)
πs2(s − q2)

(L − 1), L = ln
s

m2
e

. (11)

In the last equation we used ω = (s − q2)/2
√

s and dq2 =
−2

√
sdω. Note that (11) holds for the full angular phase

space of the photon; another case of the restricted angular
phase space of the photon will be studied elsewhere.

In some cases, due to experimental conditions, the en-
tire phase space of the pion is not available. Then it is not
possible to use (9)–(11). In this situation one has to con-
tract first the hadron and lepton tensors and then carry
out phase space integration. From (8) we obtain the ISR
contribution

|MISR|2 = −4e6

q2 |Fπ(q2)|2R,

R =
m2

π

q2 F +
χ2

1 + χ2
2 − χ1(q2 − t2) − χ2(q2 − t1)

t1t2

−2m2
e

t22

(
χ1

q2 − 1
)

− 2m2
e

t21

(
χ2

q2 − 1
)

, (12)

where χ1,2 ≡ 2p1,2 · p− = 1
2 t1,2 − 1

2s − u1,2. Then the
ISR cross section takes the form [12] (“R” stands for “Re-
stricted”)

dσ
(R)
ISR =

12σ(q2)R
sζ

α

4π2

d3k

ω

dϕ+

2π
|p+|dE+dc+

E−
×δ(2E − ω − E+ − E−), (13)

where we introduced the electron (positron) energy E =√
s/2 in the CM frame. Using the relation∫ |p+|dE+dc+

E−
δ(2E − ω − E+ − E−)

→
∫ |p+|2dc+

(2E − ω)|p+| + ωE+ cos θγ+
(14)
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we obtain the corresponding ISR cross section

dσ
(R)
ISR

dq2 =
3σ(q2)
4E2ζ

α

2π
ω

E

1∫
−1

d cos θ

2π∫
0

dϕ+

2π

cmax∫
−cm

R|p+|2dc+

A|p+| + CE+
.

(15)
If ω < 2E(E − mπ)/(2E − mπ) (which, for example, cor-
responds to the values q2 > 0.16 GeV2 at

√
s = 1 GeV)

then we obtain

E+ =
1

(2E − ω)2 − ω2 cos2 θγ+

(
2E(E − ω)(2E − ω)

− ω cos θγ+

×
√

4E2(E−ω)2−m2
π[(2E−ω)2−ω2 cos2 θγ+]

)
. (16)

Here c+ = cos θ+, θ+ (ϕ+) is the polar (azimuthal) angle
of the positively charged pion (we take the OZ axis along
the vector p1), and cos θγ+ = kp+/|k||p+|. In this energy
region the angle θγ+ can take arbitrary values (for details
see Appendix E). Other notation can be found in [12].

2.2 Final-state radiation

The process of photon radiation from the final state is
shown in Fig. 1b, where the dark rhomb denotes the set of
the contributing diagrams. The covariant decomposition
of the FSR tensor Mµν

f can be obtained from Lorentz and
discrete symmetries (Appendix A). This tensor involves
three gauge-invariant structures τµν

i and invariant func-
tions fi (i = 1, 2, 3). The explicit form of the functions fi

in the framework of ChPT is discussed in Sect. 3. In terms
of fi we obtain

|MFSR|2 =
e6

s2

[
a11|f1|2 + 2a12Re(f1f

∗
2 ) + a22|f2|2 (17)

+ 2a23Re(f2f
∗
3 ) + a33|f3|2 + 2a13Re(f1f

∗
3 )
]
,

a11 =
1
4
s(t21 + t22),

a33 = −s2

2
[t1t2l2 + 2(u1 + u2)(u2t1 + u1t2)],

a22 =
1
8
(
sl4(t1 + t2)2

+ 4l2
[
u1

2(s2 + s(t1 + t2) + t22)

+ u2
2(s2 + s(t1 + t2) + t21)

+ 2u1u2[s2 + s(t1 + t2) − t1t2]
])

+ s(u2
1 + u2

2)(u1 + u2)2,

a12 =
1
8
(
sl2(t1 + t2)2 + 4u1

2(s2 + st2 + t22)

+ 4u2
2(s2 + st1 + t21)

+ 4u1u2[2s2 + s(t1 + t2) − 2t1t2]
)
,

a13 =
s

4
[(u1 + u2)(st1 + st2 + t1t2) − u1t

2
2 − u2t

2
1],

a23 =
s

4
[−l2(u1t

2
2 + u2t

2
1

− (u1 + u2)t1t2) − 2s(u1 + u2)3

+ 2(u1 + u2)[u1
2t2 + u2

2t1 − u1u2(t1 + t2)]
]
.

In order to obtain the cross section dσFSR we have to
substitute (17) in (7) and integrate over the phase space
of the final particles.

In the case of the full phase space of pions, the inte-
gration can be simplified using the method suggested in
[11]. In this case the squared matrix element |MFSR|2 in
(3) can be integrated in the invariant form∫

|MFSR|2 d3p−d3p+

E−E+
δ4(q − p− − p+) =

e6

s2 JµJ∗
ν Wµν .

(18)
Taking into account the conditions WµνQµ =

WµνQν = 0, one can write Wµν as

Wµν = h1g
µν +

Q2

(k · Q)2
(h1 + Q2h2)kµkν + h2Q

µQν

−h1 + Q2h2

k · Q
(kµQν + kνQµ), (19)

where h1,2 are functions of q2 and Q2.
In the framework of sQED h1,2 were found in [11]

(see also Appendix D). Using (19) we obtain the follow-
ing equations for h1,2 in terms of the functions fi for any
model of FSR :

h2(k · q)2

=
∫

d3p+d3p−
E+E−

δ4(q − p+ − p− − k)

× [(k · l)2|f2|2 + (k · Q)2|f3|2
−2(k · l)(k · Q)Re(f2f

�
3 )]

× [(k · Q)2l2 + (k · l)2(Q2 − 2k · Q)], (20)
2h1 − h2Q

2

=
∫

d3p+d3p−
E+E−

δ4(q − p+ − p− − k)

× {2(k · Q)2|f1|2
+ [l4(k · Q)2 + l2(k · l)2(Q2 − 2k · Q)
+ 2(k · l)4]|f2|2
+ 2[(k · l)2Q2 + l2(k · Q)2]Re(f1f

�
2 )

− 4Q2(k · Q)(k · l)Re(f1f
�
3 )

− 4Q2(k · l)3Re(f2f
�
3 )

+ [(k · l)2Q4 + 2(k · l)2Q2(k · Q)
−l2Q2(k · Q)2]|f3|2}, (21)

with Q2 = s. In Appendix D the explicit form of h1,2 is
presented in the framework of ChPT.

Then the cross section dσ
(F)
FSR/dωd cos θ takes the form

dσ
(F)
FSR

dωd cos θ
=

α3ω

4πs2

[
h1 − t1t2

2sω2 (h1 + sh2)
]

. (22)

Integrating this equation over the polar angle of the emit-
ted photon we find

dσ
(F)
FSR

dq2 =
α3(s − q2)

24πs3 (2h1 − sh2). (23)
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If we deal with the restricted phase space we can use
the same arguments which led to (15) in Sect. 2.1. Then
the cross section can be written as

dσ
(R)
FSR

dq2 =
|MFSR|2
32s(2π)3

ω√
s

|p+|2
(2E − ω)|p+| + ωE+cγ+

×dϕ+

2π
dc+d cos θ, (24)

where |MFSR|2 is determined in (17).

2.3 Interference

The interference part of the squared invariant amplitude
|M |2 is written in terms of the invariant functions fi and
the pion form factor as follows:

Re(MISRM∗
FSR)

= − e6

4sq2

[
A1Re(Fπ(q2)f∗

1 ) + A2Re(Fπ(q2)f∗
2 )

+A3Re(Fπ(q2)f∗
3 )
]
, (25)

where the coefficients Ai are

A1 = −2u1

(−s2 + (t1 − t2)s + t1t2
t1

+
s2 + t22

t2

)

+ 2u2

(−s2 + (t2 − t1)s + t1t2
t2

+
s2 + t21

t1

)
,

A2 = −4
u1

2 + u2
2

t1t2
× [(s(t1 − t2) − t2(t1 + t2)) u1

− (s(t2 − t1) − t1(t1 + t2)) u2]

− l2

t1t2

(
u1[2s2(t1 − t2)

+ s(t1 + t2)(t1 − 3t2) − t2(t1 − t2)2]
− u2[2s2(t2 − t1) + s(t1 + t2)(t2 − 3t1)

−t1(t2 − t1)2]
)
,

A3 = −2s(t1 − t2)l2

− 4s

(
u1

2
(

2 +
s + t2

t1

)

− u2
2
(

2 +
s + t1

t2

)
+

s(t2 − t1)
t1t2

u1u2

)
. (26)

We would like to mention that the cross sections dσISR
and dσFSR are symmetric under the interchange of the
π+ and π− momenta, while the interference term dσIFR
is antisymmetric:

dσISR(p+, p−) = dσISR(p−, p+),
dσFSR(p+, p−) = dσFSR(p−, p+),
dσIFR(p+, p−) = −dσIFR(p−, p+). (27)

Therefore dσIFR integrated over the symmetric phase
space of the pions (for example, for the full unrestricted
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Fig. 2. Diagrams for FSR in the framework of ChPT. Dashed
lines depict a pion, wavy lines a photon, double-dashed lines a
ρ0 meson, and dotted lines an a1 meson. The hatched circles
denote the irreducible γππ vertex

phase space) is equal to zero. Other implications of (27)
are considered in the next sections.

For the restricted phase space of pions we have a result
analogous to (24):

dσ
(R)
IFR

dq2 =
Re(MISRM∗

FSR)
16s(2π)3

ω√
s

|p+|2
(2E − ω)|p+| + ωE+cγ+

×dϕ+

2π
dc+d cos θ. (28)

3 Final-state radiation
in the framework of ChPT

Based on results of Appendix A we can write the FSR
tensor Mµν

F in the form

Mµν
F = f1τ

µν
1 + f2τ

µν
2 + f3τ

µν
3 . (29)

In the framework of ChPT with vector and axial-vector
mesons [14] (see the details in Appendix B) the process
γ∗ → π+π−γ is described at tree level by the diagrams
shown in Fig. 2. Using results from Appendix B we find
the invariant functions fi ≡ fi(Q2, k · Q, k · l)

fi = f sQED
i + ∆fi, (30)
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where the f sQED
i correspond to sQED:

f sQED
1 =

2k · QFπ(Q2)
(k · Q)2 − (k · l)2

, (31)

f sQED
2 = − 2Fπ(Q2)

(k · Q)2 − (k · l)2
, f sQED

3 = 0,

and ∆fi are additional contributions

∆f1 =
F 2

V − 2FV GV

f2
π

(
1

m2
ρ

+
1

m2
ρ − Q2

)
(32)

− F 2
A

f2
πm2

a

[
2 +

(k · l)2

D(l)D(−l)

+
(Q2 + k · Q)[4m2

a − (Q2 + l2 + 2k · Q)]
8D(l)D(−l)

]
,

∆f2 = − F 2
A

f2
πm2

a

4m2
a − (Q2 + l2 + 2k · Q)

8D(l)D(−l)
, (33)

∆f3 =
F 2

A

f2
πm2

a

k · l

2D(l)D(−l)
. (34)

Here D(l) = m2
a−(Q2+l2+2k ·Q+4k ·l)/4. The functions

∆fi and f sQED
i obey the same symmetry relations as given

by (A.5) for functions fi. The EM form factor in (31) for
the on-shell pion follows from (B.4):

Fπ(Q2) = 1 +
FV GV

f2
π

Q2

m2
ρ − Q2 . (35)

To account for the finite width of the vector meson one
can substitute in (32) and (35)

m2
ρ − Q2 → m2

ρ − Q2 − imρΓρ(Q2), (36)

Γρ(Q2) =
mρG

2
V

48πf4
π

Q2
(

1 − 4m2
π

Q2

)3/2

θ(Q2 − 4m2
π),

where Γρ(Q2) is the energy dependent width for the ρ →
ππ decay. In a similar way one can include in (32)–(34)
the width of the decay a1 → 3π. The analytical form of
Γa1(Q

2) can be taken from, e.g., [15].
Using the form of f1,2,3 we can find the functions h1,2

from Sect. 2.2 appearing in the FSR cross section. The ex-
pressions are rather lengthy and are listed in Appendix D.

We would like to mention that the Compton γπ → γπ
scattering amplitude in the framework of ChPT [14] was
calculated in [16]. Having compared (37)–(40) of [16] with
(32)–(34) of the present paper, we have concluded that
the ρ meson contributions are equal whereas the a1 meson
contributions are different.

In addition to the even-intrinsic-parity contributions
considered above there is an odd-intrinsic-parity part.
The corresponding Lagrangian [17,18] describes processes
which do not conserve intrinsic parity, such as ρ →
πγ. The contribution of the two-step mechanism γ∗ →
ρ±π∓ → π+π−γ to the FSR tensor is evaluated in Ap-
pendix F.

Table 1. Masses and coupling parameters of vector and axial-
vector mesons

meson m (GeV) GV (GeV) FV (GeV) FA (GeV)
ρ 0.775 0.066 0.14 –
a1 1.23 – – 0.122

4 Results of calculation

Table 1 lists the parameters of the model. The cou-
plings FV , FA are determined from the experimental de-
cay widths [19]: Γ (ρ0 → e+e−) = 6.85 ± 0.11 keV and
Γ (a1 → πγ) = 640 ± 246 keV, while GV is fixed from
the width Γ (ρ → ππ) = 150.7 ± 2.9 MeV (we neglect the
chiral corrections here). The pion weak-decay constant is
fπ = 92.4 MeV.

4.1 Charge asymmetry

We will illustrate the results obtained in the previous sec-
tions by considering the charge asymmetry [13]

A =
N(θ+) − N(θ−)
N(θ+) + N(θ−)

(37)

for “collinear” kinematics in which the hard photon is ra-
diated inside a narrow cone with the opening angle 2θ0,
θ0 � 1, along the direction of initial electron. We choose
θ0 = 7◦. In these conditions the asymmetry takes the form

A ≈ dσ
(R)
IFR

dq2dc+

[
dσ

(R)
ISR

dq2dc+

]−1

, (38)

where we neglected the FSR contribution compared to the
ISR one in the denominator.

The ISR cross section for collinear kinematics was ob-
tained in [12]. We use (26)–(30) of [12], which were derived
in the quasi-real-electron approximation. It is convenient
to rewrite these results as follows:

dσ
(R)
ISR

dq2dc+
=

πα2ζ|Fπ(q2)|2
3q2s

α

2π
P (z, L0)A(q2, c+),

P (z, L0) =
s2 + q4

s(s − q2)
L0 − 2q2

s − q2 , L0 = ln
sθ2

0

4m2
e

,

A =
12
ζ

z[(1 + z)K − (1 − z)c+]2U
K[(1 + z)2 − (1 − z)2c2

+]2
,

U =
χ1

s
− χ2

1

s2 − m2
π

q2 , z =
q2

s
, (39)

χ1

s
=

z[1 + z − 2Kc+ + (1 − z)c2
+]

(1 + z)2 − (1 − z)2c2
+

,

K =

√
1 − m2

π

sz2 [(1 + z)2 − (1 − z)2c2
+].

In order to obtain dσ
(R)
IFR/dq2dc+ we should integrate

the right-hand side of (28) over ϕ+ and θ. Since the right-
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Fig. 3. Charge asymmetry as a function of pion polar angle
at fixed q2 for s = 1 GeV2. Here the solid line corresponds to
sQED, the dashed line to the full result in ChPT

hand side has no singularity at the point θ = 0 the in-
tegration over ϕ+ and θ can be easily done numerically.

In Figs. 3 and 4 we show the asymmetry dependence on
pion polar angle (at fixed q2) and on q2 (at fixed pion polar
angle). It follows from the calculations that the asymmetry
changes sign at about q2 = 0.5 GeV2 (see Fig. 4). At all
pion angles the difference between sQED and ChPT shows
up only at small values of q2, i.e at high photon energies.

The sQED description is adequate for soft photon
emission. It follows from (31)–(34) that at small photon
energies, f sQED

1 ∼ 1
ω , f sQED

2 ∼ 1
ω2 , whereas ∆fi which

are responsible for the deviation from sQED behave rather
as constants. Only at large photon energies the contribu-
tion from the intermediate a1 meson (the last two dia-
grams in Fig. 2) can be sizable, because the denominators
D(l)D(−l) in (32)–(34) approach the a1 meson pole with
the photon energy increasing.

For high value of q2 the difference between the pre-
dictions of sQED and full calculation in ChPT is small.

Fig. 4. Charge asymmetry as a function of q2 at fixed pion
polar angle for s = 1 GeV2. The notation for the curves is the
same as in Fig. 3

For example, at q2 = 0.8 GeV2 and q2 = 0.6 GeV2 it is
less than 1% (the dashed and solid lines in Figs. 3 and 4
almost coincide). Taking into account that the asymme-
try itself is less than 10−2, the experimental observation
of such deviations in the energy region q2 ≥ 0.6 GeV2 is
problematic.

Additional contribution coming from the process γ∗ →
ρ±π∓ → π+π−γ turns out very small (see Appendix F)
and does not change the above conclusion.

In order to test the calculation we can check that the
asymmetry, integrated over the symmetric phase space of
the pions, vanishes. Since no restriction has been imposed
on the π− polar angle we impose no restriction on the π+

polar angle, i.e. choose 0◦ ≤ θ+, θ− ≤ 180◦. Indeed, the
integrated asymmetry is equal to zero.
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Fig. 5. Differential contribution to a
(had,γ)
µ from e+e− →

π+π−γ, where γ is the hard photon with energy ω ≥ Ecut (up-
per panel). Integrated contribution to a

(had,γ)
µ as a function of

Ecut for smax = 1.5 GeV2 (lower panel). The solid (dashed) line
corresponds to the sQED (full) result

4.2 Contribution from e+e− → π+π−γ to AMM
of the muon

Now we apply the previous results to the calculation of
ahad,γ

µ which arises from the π+π−γ channel. We should
mention that only the radiation of the hard photon with
the energy ω ≥ Ecut is taken into account.

According to [20] ahad,γ
µ can be written in terms of the

dispersion integral

ahad,γ
µ =

α2

3π2

∫ ∞

4m2
π

Rγ(s)K(s)
ds

s
,

Rγ(s) =
σπ+π−,γ(s)
σµ+µ−(s)

, (40)

σµ+µ−
(s) =

4πα2

3s

(
1 +

2m2
µ

s

)√
1 − 4m2

µ

s
,

K(s) =
∫ 1

0

x2(1 − x)
x2 + (1 − x)s/m2

µ

dx,

where mµ is the muon mass.

Fig. 6. Integrated contribution to a
(had,γ)
µ as a function of Ecut

for smax = 1.5 GeV2. The notation for the curves is the same
as in Fig. 3

To obtain the cross section σπ+π−,γ(s) we have to in-
tegrate (23) over q2 from 4m2

π to q2
max. The value of q2

max
is determined from the equality q2

max = s−2
√

sEcut. From
the condition q2

max ≥ 4m2
π, the lower limit of the integra-

tion in (40) is found to be smin = (Ecut +
√

4m2
π + E2

cut)2.
The upper limit in (40) is replaced by a finite smax. The
value of smax is chosen smax = 1.5 GeV2, which is about of
O(m2

a), the upper limit of the applicability of ChPT with
ρ and a1 mesons. The dependence of ahad,γ

µ on energy Ecut
is shown in Fig. 5.

As follows from our calculations the additional con-
tributions to ahad,γ

µ stemming from ChPT are very small
compared to the sQED result. This is in line with the con-
clusion of [21]. Even for the relatively large cut-off energy
Ecut = 200 MeV the full result in ChPT differs from the
sQED result only by 3.5%. For that reason the solid and
dashed lines in Fig. 5 almost coincide. At the same time
with increasing photon energy sQED begins to loose its
predictive power. This is demonstrated in Fig. 6. In this
region of energies the contribution from the a1 meson is
considerable and has to be taken into account. For exam-
ple, at a photon energy about 500 MeV the deviation from
sQED reaches 60%. However such a deviation (which is of
the order of 10−12) is beyond the accuracy of the present
measurements of the muon AMM.

5 Conclusions

In this article the FSR of a hard photon in the e+e− →
π+π−γ reaction has been considered in the framework of
ChPT with vector ρ and axial-vector a1 mesons. The re-
spective Lagrangian generates effective O(p4) chiral terms
and, as substantiated in [14], is adequate for the descrip-
tion of processes at energies up to about 1 GeV.

Our consideration of FSR is motivated by the necessity
to study the model dependence of the hadronic contribu-
tion ahad,γ

µ to AMM of the muon. We have demonstrated
that this dependence is weak, in particular, in the region
of energies up to s = 1.5 GeV2 the differences between
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predictions of ChPT and sQED are very small compared
to the present experimental accuracy. In general, the de-
viation of ChPT from sQED increases with increasing the
minimal photon energy Ecut. However this deviation be-
comes essential only if the energy of the photon exceeds
400 MeV, in the region where ahad,γ

µ itself is beyond the
existing experimental precision. To observe such effects
the experimental accuracy has to be increased by at least
one order of magnitude.

In fact, this small deviation is not surprising. Firstly, at
fixed value of s the low-energy photon region is described
similarly in both models and, as follows from the calcula-
tion, this region dominates in ahad,γ

µ . Secondly, the main
contribution to the integral over s in (40) comes from the
region of the ρ-resonance, which is accounted for in the
same way in sQED and ChPT through the VMD model.
Therefore, the integral ahad,γ

µ is not sensitive to the chiral
dynamics (see also the discussion in [21]).

The developed approach has also allowed us to inves-
tigate the C-odd asymmetry of the cross section caused
by the ISR–FSR interference. In general, measurements
of the asymmetry can test the FSR amplitude. We con-
sidered radiation of the photon at the small angle relative
to the direction of the electron momentum, θ < θ0 = 7◦.
In these conditions the absolute value of asymmetry is
of the order of θ2

0 ∼ 10−2. According to our calculations
the difference between sQED and ChPT shows up only
at the high photon energies ω ≥ 0.3 GeV. For the smaller
photon energies the difference is less than 1%. Since the
asymmetry itself is less than 10−2 for the selected collinear
kinematics the experimental observation of this difference
in the energy region ω < 0.3 GeV is problematic. Thus
the model dependence of the asymmetry can experimen-
tally be observed only at q2 close to the threshold region,
4m2

π ≤ q2 < 0.4 GeV2.
In our view, the photon FSR from the two-pion channel

in e+e− → hadrons process shows the model dependence
only near the two-pion threshold where the photon en-
ergy is large. In the bulk of energies (0.4 GeV2 < q2 < s)
scalar QED is sufficient to describe the FSR contribu-
tion to ahad,γ

µ and the C-odd asymmetry. In that way our
results validate recent calculations [13] performed in the
framework of sQED.

It is plausible that the more complicated many-particle
channels are more sensitive to the chiral dynamics. An-
other possibility to test chiral models is the region of the
space-like photon momenta (Q2 < 0). In particular, the
virtual Compton scattering on the pion, e−π± → e−π±γ,
allows one to obtain information on the pion polarizabili-
ties (see, e.g., [22,16]).

Acknowledgements. We are grateful to S. Eidelman for careful
reading the manuscript and valuable suggestions. We thank
J.F. Donoghue for his comments concerning [16].

Appendix A: General form of FSR tensor

The amplitude of the reaction γ∗(Q) → γ(k) + π+(p+) +
π−(p−) depends on three 4-momenta, which can be chosen
as Q, k, and l ≡ p+ − p−. Here Q = p1 + p2 is the total
momentum of the e+e− pair with Q2 = s = 4E2. For on-
mass-shell pions Q · l = k · l. In general, the second-rank
Lorentz tensor Mµν(Q, k, l) can be decomposed through
10 independent tensors [23,24]:

Mµν(Q, k, l) =
10∑

i=1

Ωµν
i Fi(Q2, k2, Q · k, k · l), (A.1)

Ωµν
i = {gµν , QµQν , kµkν , lµlν , lµQν ,

Qµlν , lµkν , kµlν , Qµkν , kµQν},

where parity conservation is taken into account. The ten-
sor Mµν(Q, k, l) obeys the following properties:

Mµν(Q, k, l) = Mµν(Q, k,−l) = Mνµ(−k,−Q, l). (A.2)

The first equality follows from the charge
conjugation symmetry of the S-matrix el-
ement 〈γ(k), π+(p+)π−(p−)|S|γ∗(Q)〉 =
〈γ(k), π−(p+)π+(p−)|S|γ∗(Q)〉, and the second one
is due to the photon crossing symmetry: Q ↔ −k and
µ ↔ ν. Equations (A.2) impose certain constraints on the
scalar functions Fi(Q2, k2, Q · k, k · l).

The consideration below follows that of [24], where the
virtual Compton scattering γ∗(q)+π+(p) → γ(q′)+π+(p′)
with the space-like initial photon (q2 < 0) and real final
photon (q′2 = 0) has been studied in detail. Some of the
results for the reaction γ∗(Q) → γ(k) + π+(p+) + π−(p−)
can be obtained from the corresponding results of [24]
after the substitutions pµ → −pµ

−, p′µ → pµ
+, qµ → Qµ,

q′µ → kµ.
The gauge invariance conditions QµMµν(Q, k, l) = 0

and Mµν(Q, k, l)kν = 0 lead to the five linear equations
between the functions Fi in (A.1), and in the general case
of two virtual photons one is left with five scalar func-
tions (see (14) and (15) of [24]). We are interested in the
situation, where the final photon is real, i.e. k2 = 0 and
kνε′

ν = 0 (ε′
ν is the polarization vector of the final photon),

while the initial photon produced in e+e− annihilation is
virtual with Q2 ≥ 4m2

π. In this case one obtains

Mµν(Q, k, l) = −ie2(τµν
1 f1 + τµν

2 f2 + τµν
3 f3)

≡ −ie2Mµν
F (Q, k, l), (A.3)

with the gauge-invariant tensors

τµν
1 = kµQν − gµνk · Q, (A.4)

τµν
2 = k · l(lµQν − gµνk · l) + lν(kµk · l − lµk · Q),

τµν
3 = Q2(gµνk · l − kµlν) + Qµ(lνk · Q − Qνk · l).

The scalar functions fi ≡ fi(Q2, k ·Q, k · l) are either even
or odd with respect to the change of sign of the argument
k · l:

f1,2(Q2, k · Q, k · l) = +f1,2(Q2, k · Q,−k · l),
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f3(Q2, k · Q, k · l) = −f3(Q2, k · Q,−k · l). (A.5)

The factor −ie2 in (A.3) is included for convenience. It
thus follows that the evaluation of the FSR tensor amounts
to the calculation of the scalar functions fi (i = 1, 2, 3).

Appendix B:
Chiral Lagrangian for pseudoscalar, vector
and axial-vector mesons and photon

We choose the O(p2) chiral Lagrangian derived by Ecker
et al. [14], which contains vector mesons and axial-vector
mesons. It includes the interaction of pseudoscalar, vector
and axial-vector mesons and photons. The explicit form is
given in [14]:

L =
f2

π

4
Tr(DµUDµU† + χU† + χ†U) − 1

4
FµνFµν

− 1
2
Tr
(

∇λVλµ∇νV νµ − 1
2
m2

ρVµνV µν

)

− 1
2
Tr
(

∇λAλµ∇νAνµ − 1
2
m2

aAµνAµν

)

+
FV

2
√

2
Tr(Vµνfµν

+ ) +
iGV√

2
Tr(Vµνuµuν)

+
FA

2
√

2
Tr(Aµνfµν

− ), (B.1)

where U = exp(i
√

2Φ/fπ), Φ describes the SU(3) octet
of the pseudoscalar mesons, Vµν (Aµν) is the antisym-
metric field describing the SU(3) octet of the polar-vector
(axial-vector) mesons, and Fµν = ∂µBν −∂νBµ is the EM
tensor, where the photon field is denoted by Bµ. Further,
fπ, FV , GV , FA are constants, whose numerical values are
specified in Sect. 4. For more details on definitions and
notation see [14].

For treating the process γ∗ → π+π−γ at tree level it is
sufficient to keep in (B.1) the terms containing the neutral
meson ρ0(770), and the charged mesons a±

1 (1260) and π±,
as well as the photon. We obtain

L = ieBµ(π−∂µπ+ − π+∂µπ−) + e2BµBµπ+π−

+ e
FV

2
Fµνρ0

µν

(
1 − π+π−

f2
π

)

+ i
GV

f2
π

ρ0
µν(∂µπ+∂νπ− − ∂µπ−∂νπ+)

+ ie
FA

2fπ
Fµν(a+

1µνπ− − a−
1µνπ+)

+ e
GV

f2
π

ρ0
µν [Bµ(π+∂νπ− + π−∂νπ+)

−Bν(π+∂µπ− + π−∂µπ+)]. (B.2)

The Lagrangian (B.2) leads to the Feynman rules dis-
cussed in Appendix C. The diagrams contributing to the
γ∗ → π+π−γ reaction at tree level are shown in Fig. 2.

For the general case of two virtual photons we obtain the
FSR tensor Mµν

F :

Mµν
F =

1
Q2 − 2Q · p−

Γµ(Q − p−, p−)Γ ν(p+, p+ + k)

+ (p+ ↔ p−) − 2gµν +
F 2

V − 2FV GV

f2
π

×
(

1
m2

ρ − Q2 +
1

m2
ρ − k2

)
(gµνk · Q − kµQν)

− 2FV GV

f2
π

[
1

m2
ρ − Q2 (gµνQ2 − QµQν)

+
1

m2
ρ − k2 (gµνk2 − kµkν)

]

+
F 2

A

f2
πm2

a

[
(gµνk · Q − kµQν)

+
1

m2
a − (Q − p−)2

× [(k + p+)µ(k · Q(k + p+)ν − k · (k + p+)Qν)
− Q · (k + p+)(kµ(k + p+)ν − k · (k + p+)gµν)]

+(p+ ↔ p−)

]
(B.3)

where the EM vertex for the off-mass-shell pion (with ini-
tial pi and final pf momenta) is

Γµ(pf , pi) = (pi + pf )µ

+
FV GV

f2
π(m2

ρ − r2)
[(pi + pf )µr2 − rµ(p2

f − p2
i )],

r ≡ pf − pi. (B.4)

Note that Lagrangian (B.1) was applied in [16] in calcu-
lation of the Compton tensor for γ∗π+ → γ∗π+.

Appendix C:
Feynman rules for ChPT Lagrangian

Following [14] we describe the vector (axial-vector) meson
by the antisymmetric tensor field that corresponds to the
following form of the propagator:

i∆αβ;µν(q) =
i

M2(M2 − q2)

× [gαµgβν(M2 − q2) + gαµqβqν − gανqβqµ

−(α ↔ β)], (C.1)

where M is a mass of the vector (axial-vector) meson.
The vertices corresponding to the ChPT Lagrangian

from Appendix B are listed in Fig. 7.

Appendix D:
Expressions for functions h1,2

The functions h1 and h2 of Sect. 2.2 can be written as

hi = hsQED
i + ∆hi, (D.1)
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π
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2f2
π
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Fig. 7.

where hsQED
i are determined from the following equations

[11]

hsQED
2 (k · q)2 = 4πξ|Fπ(Q2)|2[3q2 − (q2 + 2m2

π)L1] (D.2)

2hsQED
1 − hsQED

2 Q2 =
16πξ|Fπ(Q2)|2

(k · Q)2
(D.3)

×
[
(k · Q)2 +

(
Q2

4
− m2

π

)
(−q2 + (q2 − 2m2

π)L1)
]

with ξ =
(

1 − 4m2
π

q2

)1/2

and L1 =
1
ξ

ln
1 + ξ

1 − ξ
.

From (32)–(34) we obtain the equation for ∆h2 and
(2∆h1 − sh2) in ChPT:

2∆h1 − s∆h2

= 2πξ

{
C1 +

C2L2

k · Q

+
C3[

(m2
a − m2

π)(r − k · Q) + 4m2
π(k·Q)2
q2

]
+ 4ReFπ(s)

×
[
fQ2 − ar + 2m2

πL1

(
− f + a

× 2(m2
a − m2

π)(r − k · Q) + 2m2
πr + k · Q(m2

a − m2
π)

(m2
a − m2

π)(r − k · Q)

)

−
(

4m2
π(m2

a + m2
π)(k · Q)2

(m2
a − m2

π)(r − k · Q)
+ 2m2

πq2

+(m2
a − m2

π)(r + 2Q2 − k · Q)

)
aL2

k · Q

]}
, (D.4)
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where

C1 = 2(k · Q)2f2 + af(2q2k · Q + rQ2)

+
1
4
a2((q2 − 2k · Q)q2 + 2r2), (D.5)

C2 = −af

2
{(k · Q)2(Q2 + 4k · Q + 4m2

π)

+ 2k · Q(Q2 + 2k · Q)r + Q2r2}
+

a2

8r
{(k · Q)2[8m4

π + 2m2
π(Q2 + 6k · Q)

+ k · Q(2Q2 + 5k · Q)]
+ 2k · Qr[−q2Q2 + 12k · Q(m2

π + k · Q)]
− 2r2[Q4 + m2

πq2 + k · Q(Q2 − 11k · Q)]
− 4Q2r3 − 3r4}, (D.6)

C3 =
a2

4
{[8m4

π

+ 2m2
π(−Q2 + 6k · Q) + 5(k · Q)2 + Q4](k · Q)2

+ 2rk · Q[Q4 + 2Q2k · Q + 4(k · Q)2 + 4m2
π(k · Q)]

+ r2[Q4 + 8Q2k · Q + 2(k · Q)2 + 2m2
πq2]

+ 4Q2r3 + r4}, (D.7)

∆h2(k · Q)2 =
πa(m2

a − m2
π)ξ

2

×
{

q2
(

3a(m2
a − m2

π)
2

+ 8ReFπ(s)
)

+
16(k · Q)2m2

πReFπ(s)
(m2

a − m2
π)(r − k · Q)

L1

−
[
3q2(m2

a − m2
π)(r − k · Q) + 2(k · Q)2(q2 + 2m2

π)
4rk · Q

×a(m2
a − m2

π)
+ 8ReFπ(s)

× r(q2(m2
a − m2

π)(r − k · Q) + 4(k · Q)2m2
π)

2k · Q(r − k · Q)(m2
a − m2

π)

]
L2

}
,

L2 =
1
ξ

ln
r + ξk · Q

r − ξk · Q
, r = m2

a − m2
π − k · Q,

a =
F 2

A

m2
af2

π

,

f =
F 2

V − 2FV GV

f2
π

(
1

m2
ρ

+
1

m2
ρ − s − imρΓρ

)
. (D.8)

Appendix E:
Kinematics of the 3-particle final state

Solving energy-momentum conservation for the pion en-
ergy E+ in (16) requires some care. Firstly, notice that the
energy of the photon at fixed CM energy

√
s = 2E varies

within the limits 0 ≤ ω ≤ ωmax = E−m2
π/E. Secondly, by

requiring positiveness of the expression under the square

root in (16) at arbitrary cos θγ+, we get the conditions

ω ≤ ω− =
2E(E − mπ)

2E − mπ
,

ω ≥ ω+ =
2E(E + mπ)

2E + mπ
.

(E.1)

Clearly ω+ ≥ ωmax and ω− ≤ ωmax. Thus the restric-
tion for the photon energy is 0 ≤ ω ≤ ω−. The corre-
sponding invariant mass of the π+π− pair is 4E2 ≥ q2 ≥
4E2mπ/(2E − mπ) ≈ 2Emπ.

The requirement 0 ≤ ω ≤ ω− coincides with the con-
dition that the energy conservation law in (14) leads to
one solution for E+, namely the one in (16). In the other
case, if ω− ≤ ω ≤ ωmax, the situation becomes more com-
plicated: there appear two solutions E

(−)
+ and E

(+)
+ , which

differ by the sign in front of the square root in (16). Cor-
respondingly one has to sum over two terms in (14) corre-
sponding to these solutions. Besides, the angle θγ+ in this
case is limited by the value

(sin2 θγ+)max =
4E(E − ω)[E(E − ω) − m2

π]
m2

πω2 . (E.2)

For these values of photon energies each angle θγ+ in the
laboratory frame (CM frame for colliding e+e− beams)
corresponds to the two different angles between momenta
of π+ and γ in the π+π− CM frame. Here we refer to the
monograph of [25] (chapter III), where these aspects of
kinematics are considered in detail.

Appendix F:
Contribution to FSR from ρ± → π±γ decays

The diagrams with intermediate charged ρ meson can be
obtained from the 3rd row of diagrams in Fig. 2, if a±

1
meson is replaced by ρ± meson. We choose the chiral La-
grangian, describing the odd-intrinsic-parity sector, in the
form [17]

L(V ) = HV εµναβTr(V µ{uν , fαβ
+ })

 −2
√

2eHV

3fπ
εµναβFαβ�ρµ∂ν�π (F.1)

in the vector formulation for the ρ meson field, where
εµναβ is the totally antisymmetric Levi-Civita tensor.

The constant HV can be determined from the ρ± →
π±γ decay width Γ (ρ± → π±γ) = 68.7 keV [19]. From
(F.1) one finds

Γ (ρ± → π±γ) =
4αm3

ρH
2
V

27f2
π

(
1 − m2

π

m2
ρ

)3

(F.2)

and thus HV = 0.0363.
The corresponding contribution to the invariant func-

tions of Sect. 3 takes the form

∆fρ±
1 =

8H2
V

9f2
π
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Fig. 8. Charge asymmetry as a function of pion polar angle
for s = 1 GeV2. The solid (dotted) line corresponds to the
tensor (vector) formulation for ρ meson, the dashed line to the
calculation without ρ → πγ contribution

×
[
(k · Q + l2)

(
1

C(l)
+

1
C(−l)

)

+ 2k · l

(
1

C(l)
− 1

C(−l)

)]
, (F.3)

∆fρ±
2 = −8H2

V

9f2
π

(
1

C(l)
+

1
C(−l)

)
, (F.4)

∆fρ±
3 =

8H2
V

9f2
π

(
1

C(l)
− 1

C(−l)

)
, (F.5)

where C(±l) = m2
ρ − (k + p±)2 − imρΓρ((k + p±)2) with

(k + p±)2 = (Q2 + l2 + 2k · Q ± 4k · l)/4.
If we choose the antisymmetric-tensor field formulation

for the ρ meson as was done in the rest of this paper, then
the Lagrangian, which is equivalent to (F.1) on the mass
shell, reads

L(T ) =
√

2eHV mρ

3fπ
εµναβFαβ�ρµν�π. (F.6)

For this Lagrangian the functions ∆fρ±
2,3 are the same as

in (F.4) and (F.5), while ∆fρ±
1 differs from (F.3) by an

additional term,

(∆fρ±
1 )′ = ∆fρ±

1 +
64H2

V

9f2
π

. (F.7)

According to our calculations, at invariant masses from
the two-pion threshold to q2 ≈ 0.4 GeV2 the ρ → πγ con-
tribution to the charge asymmetry may be of the same or-
der as the a1 → πγ contribution, if the tensor formulation
for the ρ meson field is applied (see Fig. 8). For the higher
values of q2 the considered mechanism is suppressed with
respect to other contributions.

Regarding the seeming difference between vector and
tensor formulations, we should note that, as argued in
[17,26], the effective Lagrangians in the two formulations
would become equivalent if the Lagrangian in the ten-
sor formulation included an additional local term. Appar-
ently the contribution from this local term to the functions

∆fρ±
i would cancel the term 64H2

V /(9f2
π) in (F.7) mak-

ing the charge asymmetry independent of the formulation
for the ρ meson field. Therefore we can conclude that the
contribution of the γ∗ → ρ±π∓ → π+π−γ process to the
asymmetry is very small at all two-pion invariant masses.
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